6 mei 2025
Leestijd 5 min

In de nabije toekomst zal kunstmatige intelligentie (AI) je bedrijf naar een hoger niveau tillen. Het zal de productiviteit, het gebruik van resources, de onderhoudbaarheid, de efficiëntie van het personeelsbestand en nog veel meer verhogen. Maar voordat dat kan gebeuren, moet je gegevens verzamelen en genoeg voorbeelden geven om je AI-algoritmes te trainen. Of je bedrijf nu actief is in de financiële sector of in de medische sector, of je je nu richt op warehousing of afvalverwerking, elk bedrijf heeft één ding gemeen: er stromen al gegevens door de organisatie.
Deze blogpost wil je bewust maken van het belang van gegevensverzameling als opstap naar Kunstmatige Intelligentie. Alleen als je gegevens zichtbaar, adequaat en aangevuld zijn met externe gegevens en representatief zijn voor je demografie, kun je profiteren van positieve kansen die zich voordoen in de wereld van vandaag en kun je betere zakelijke beslissingen nemen.
Wat is kunstmatige intelligentie?
Kunstmatige intelligentie (AI) in zijn eenvoudigste vorm is de imitatie van menselijke intelligentie door een machine. Met andere woorden, het stelt programma's in staat om mensachtige beslissingen te nemen en mensachtige redeneringen te volgen. Een populair subdomein van Kunstmatige Intelligentie is Machine Learning. In plaats van expliciet een reeks regels te programmeren, leiden Machine Learning-toepassingen patronen af uit voorbeelden en 'leren' ze hoe dingen werken.
Verberg uw gegevens
Toegankelijke gegevens kunnen goed gebruikt worden. Er is vast wel iemand die weet hoeveel mensen er voor je bedrijf werken, hoeveel voorraad je bijhoudt, hoeveel voorraad je de afgelopen maanden hebt verplaatst en hoe je fabriek scoort op efficiëntie en productiviteit. Maar wat gebeurt er met deze gegevens als ze eenmaal zijn verzameld? Een mooie presentatie voor het bestuur? Zijn deze cijfers ergens in de cloud opgeslagen? Misschien zijn ze beschikbaar in een gecentraliseerde database? Of, erger nog, misschien staan ze in een Excel-bestand op een privéschijf stof te verzamelen?
In veel bedrijven heeft slechts een beperkt aantal mensen toegang tot bepaalde bedrijfsmiddelen. Omdat dit betekent dat gegevens geïsoleerd zijn van de rest van de organisatie, noemen we ze informatiesilo's. Dit impliceert niet alleen wantrouwen in de organisatie, het beperkt ook het team of de applicatie die de gegevens verwerkt. Voor dezelfde gegevens kunnen er verschillende interpretaties zijn tussen teams, of een correlatie tussen kenmerken kan verborgen blijven omdat de gegevens over verschillende silo's zijn verspreid.
Er is een groot voordeel wanneer gegevens algemeen beschikbaar zijn op een gestandaardiseerde manier. Je kunt niet alleen vertrouwen op de betrouwbaarheid van de bron, maar je kunt ook een minimum aan kwaliteit en volledigheid garanderen. Als je een bedrijfscultuur opbouwt waarin gegevens centraal staan en vandaag begint met het verzamelen van die gegevens op een uniforme manier, zullen ze morgen je kunstmatige intelligentie voeden.
Bewaar meer dan alleen JOUW gegevens
Hoewel het voorspellen van de toekomst nooit zeker is, kun je verrassingen voorkomen door externe factoren mee te nemen. Als je bijvoorbeeld elektrische auto's verkoopt, kan een stijgende olieprijs een positieve invloed hebben op je verkoop. Een verandering in het overheidsbeleid kan daarentegen een negatieve invloed hebben. Een hittegolf kan ervoor zorgen dat je werknemers meer pauzes moeten nemen om uitputting te voorkomen, wat een invloed heeft op de productiviteit. Zelfs het annoteren van gegevens met bedrijfsinitiatieven kan gunstig zijn: marketingcampagnes resulteren (hopelijk) in een grotere zichtbaarheid van je organisatie en oplossingen, wat leidt tot meer verkoop. Daarom moeten de cijfers van je organisatie worden opgeslagen samen met externe feiten en cijfers die invloed hebben op de processen die waardevol zijn voor je bedrijf.
Een algoritme voor machinaal leren kan gemakkelijk rekening houden met deze extra parameters om een verband te leggen tussen meerdere gegevenssets. Het kan onderscheid maken tussen seizoensgebonden effecten, het effect van klimatologische omstandigheden en een algemene trend van stijgende verkoopcijfers.
Het centraliseren van de besluitvorming rond bedrijfsgegevens is belangrijk, maar dat geldt ook voor externe gegevens: de wereld om ons heen verandert voortdurend. Wees voorbereid om VEEL gegevens te verzamelen.
Wees op je hoede voor bevooroordeelde gegevens
Er zijn veel voorbeelden van gevallen waarin datamining ten onrechte heeft geconcludeerd wat het belang is van een bepaalde invoerfunctie. Een volledige weergave van je inventaris of klantenbestand is van vitaal belang voor de impact van gegevensanalyse. Daarnaast kan het normaliseren van je invoer voorkomen dat je model zich ooit bewust wordt van ongewenste kenmerken. Een neuraal netwerk dat is ontworpen om huidkanker te detecteren, was in staat om bij het analyseren van foto's een correlatiete identificeren tussen de aanwezigheid van een liniaal naast een tumor. In een poging om wolven en husky's te classificeren, selecteerden wetenschappers opzettelijk afbeeldingen met een specifieke achtergrond om hun algoritme te trainen. Dit bewijst dat bevooroordeelde gegevens leiden tot een onnauwkeurig model voor machinaal leren. Dit is een probleem waar zelfs ervaren datawetenschappers mee te maken krijgen. Geen wonder dat experts zeggen dat ze meer tijd besteden aan het voorbereiden van de gegevens dan aan het ontwerpen en trainen van modellen...
"Het heeft meer zin om je zorgen te maken over de gegevens en minder kieskeurig te zijn over welk algoritme je moet toepassen."
- Kunstmatige intelligentie: Een moderne benadering (S. Russell en P. Norvig)
Ook al zijn verzamelde gegevens erg waardevol voor je bedrijf, je hebt ze waarschijnlijk niet verzameld met het gebruik voor AI-toepassingen in gedachten. Daarom bevatten ze waarschijnlijk verstorende kenmerken die het leerproces zullen beïnvloeden. Het is van vitaal belang om vanaf nu na te denken over je dataverzameling en deze te beoordelen als je ze wilt voorbereiden op gebruik in AI-toepassingen.
Takeaway
Steeds meer bedrijven veranderen hun processen in datagestuurde processen om een concurrentievoordeel te behalen. Om te begrijpen hoe bepaalde aspecten je productiviteit beïnvloeden, is het belangrijk om gegevens van hoge kwaliteit te verzamelen. Als je bronnen betrouwbaar zijn en je een geschikte toepassing hebt om inzichtelijke patronen te presenteren, kun je deze gebruiken om zakelijke beslissingen te ondersteunen.
Vandaag de dag is het verzamelen van gegevens niet het moeilijkste deel. Er zijn genoeg tools die je daarbij helpen. De echte uitdaging ligt in het structureren en vastleggen van dejuiste gegevens . Het is niet eenvoudig om een oplossing te vinden die geschikt is voor uw specifieke geval, maar u kunt beginnen met het opzetten van een database of datawarehouse, nadenken over hoe u uw gegevens gaat structureren en deze vervolgens toepassen. Als u hulp nodig hebt of als u vragen hebt, klik dan hier om contact met ons op te nemen en stuur ons een bericht!
Onderneem vandaag nog actie, want weten hoe je dit kunt realiseren kost tijd en oefening. Bereid je bedrijf voor op een datagestuurde cultuur en begin met het opbouwen van kennis over machine learning om het potentiële voordeel dat je uit je gegevens haalt te benutten.
Related articles
What others have also read
Contact us
Want to dive deeper into this topic?
Get in touch with our experts today. They are happy to help!

Contact us
Want to dive deeper into this topic?
Get in touch with our experts today. They are happy to help!

Contact us
Want to dive deeper into this topic?
Get in touch with our experts today. They are happy to help!

Contact us
Want to dive deeper into this topic?
Get in touch with our experts today. They are happy to help!
