As developers, we understand that GPS accuracy is the backbone of many mobile applications, from navigation to location-based services. The accuracy of your app's GPS functionality can make or break the user experience. In this article we’ll give you five practical ways to improve the GPS accuracy of your mobile application and ensure that your users never feel lost again.
Let’s start with a real-life example of how poor GPS accuracy can cause your mobile application to fail big time.
Elise downloaded your new mobile application, Commuter. The app promises to enhance her commuting experience by delivering timely notifications about her bus stops and estimated arrival times. However, to her dismay, the performance of your app has been inconsistent. While on some days it offers accurate real-time updates, on others, she receives the notifications too late or too early. Understandably, Elise is frustrated and shares her dissatisfaction with your mobile application through a negative review.
You, as the developer, are left perplexed. After all, you've integrated the platform's standard GPS algorithms, so why the inconsistency? The app calculates her average velocity based on the difference between GPS locations and the time between these updates. It's programmed to notify her of her bus stop once her GPS coordinates fall within a 100-meter radius of the station. While this sounds logical, the real-world results don’t align with expectations.
The core issue stems from the inherent inaccuracies in GPS location data. While GPS locations include a margin of error, typically expressed in meters with a 68% confidence interval, this margin doesn't consider the influence of GPS signal reflections, also known as multipath errors.
Multipath errors occur when GPS signals bounce off objects or surfaces before reaching the GPS receiver's antenna. Urban areas with tall buildings and dense infrastructure are particularly prone to GPS signal reflections. The reflection of signals off skyscrapers, vehicles, and other structures can create a complex signal environment, leading to unpredictable location inaccuracies.
GPS signal reflections can divert the signal by kilometers, potentially causing the app to incorrectly indicate that Elise has either already reached her destination or is still kilometers away.
GPS signal reflections pose several challenges to mobile app developers:
To counter the challenges of GPS signal reflections and enhance the user experience, a renewed strategy is necessary.
Here are some innovative strategies to improve the GPS location accuracy of the Commuter mobile app in the example above:
By implementing these strategies, the Commuter app significantly enhances its accuracy, ensuring a consistent and reliable user experience. As a result, Elise and many users like her can enjoy timely and accurate updates, leading to positive reviews and overall customer satisfaction.
While the challenges faced by the Commuter app might seem unique, they reflect real-world hurdles many mobile app developers encounter. At ACA, we've successfully navigated these challenges using the strategies outlined above. While GPS is a valuable tool, understanding its limitations and augmenting its data with other technologies is key to ensuring reliable location-based services.